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Abstract--Heat and momentum transport is investigated theoretically and numerically considering a 
rectangular enclosure filled with clear fluid or with fully saturated porous medium, under time-periodic 
horizontal heating. Numerical simulations, of various configurations, indicate that the natural convection 
activity within the enclosure peaks at several discrete frequencies, with the climax attained at a heating 
frequency referred to as resonance frequency. A general theory for predicting this resonance frequency is 
developed from the natural frequency of the flow circulating inside the enclosure. The resonance frequency 
can be calculated by solving a system of non linear equations, function of the averaged Rayleigh number, 
the Prandtl number, the enclosure aspect ratio, the heating amplitude, and the Darcy number for the 
porous medium case. Theoretical predictions agree well with numerical results. It is shown that the 
convection intensity within the enclosure increases linearly with heating amplitude for a wide range of 
parameters. Moreover, the flow response to pulsating heat is continuously enhanced as the system becomes 
more permeable. Time evolution graphs, phase-plane portraits, and streamlines highlight several distinct 

phases of the periodic heating process. 

INTRODUCTION 

Natural convection flow induced by time periodic 
thermal boundary conditions is a subject of increasing 
interest. This area of research is attractive to those 
who: (I) desire to unravel the physical nuances of the 
highly non linear transport phenomena produced by 
periodic heating-cooling; (2) are challenged by the 
need of predictive theoretical models of system's 
response; (3) anticipate the potential for practical 
engineering applications, as for instance in phase- 
change processes [1-3], energy systems [4, 5], building 
insulation and fire protection techniques [6, 7], grain 
storage design [8] and hazardous thermo-chemical 
spreading [9]. 

The developmenl: of theoretical models allied with 
numerical simulations and experimental evidence is 
forming a solid basis for the advancement of knowl- 
edge in this field. An excellent state-of-the-art review 
was presented recently by Fusegi and Hyun [10]. 
Noteworthy are the studies dealing with clear fluid 
systems by Yang et  al. [11], Kazmierczak and Chinoda 
[12], Lage and Bejan [13], Mantle et  al. [14] and Lage 
[15]. The systems considered in these studies are rec- 
tangular cavities subjected to horizontal or vertical 
temperature gradients. A discovery of practical inter- 
est is the time-averaged heat transfer increase by inter- 
mittent thermal boundary conditions as compared 
with the heat transfer obtained with steady-state 
boundary condition. Another is the fundamental 
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phenomenon of flow resonance characterized by a 
surge in the convective activity within an enclosure. 

Studies dealing with convection in a fluid saturated 
porous medium system subjected to time periodic 
boundary condition are scarce. Caltagirone [16], 
Chhuon and Caltagirone [17], Rudraiah and Mal- 
ashetty [18] investigated the stability or onset of con- 
vection in a fluid saturated porous medium layer 
under periodic vertical temperature gradient. A study 
of the corresponding supercritical (convection) regime 
was presented recently by Kazmierczak and Muley 
[19]. A unique theoretical addition was the work by 
Nield [20] on time-periodic volumetric heating of a 
fluid saturated porous medium. Convection induced 
by a fixed-amplitude, time-periodic, horizontal heat 
flux imposed on a saturated porous medium enclosure 
was studied by Antohe and Lage [21]. They dem- 
onstrated that the concept of flow resonance extends 
also for moderate and high permeability porous 
systems, being negligible on systems with low 
permeability. 

Kazmierczak and Mulley [19] showed that the ther- 
mal oscillation amplitude is a factor on the heat trans- 
fer enhancement of vertically heated enclosures. The 
present work investigates the amplitude effect on the 
convection within a clear fluid, or a fluid saturated 
porous medium, rectangular enclosure heated hori- 
zontally in a time-periodic fashion. Numerical simu- 
lations are carried out covering the entire heat fre- 
quency spectrum. For  the clear fluid configuration (no 
porous matrix), the heat-flux-based Rayleigh number 
is varied from 10 v to 109. The fluid saturated porous 
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NOMENCLATURE 

A heat pulsation amplitude, Fig. 1 & 
Da Darcy number, equation (7) A 
.[~ F dimensional and non-dimensional e 

frequencies, F = 1/(2ff~) q5 
g acceleration of gravity [m S -2] )1. 
H enclosure height [m] 
i iteration index # 
I Forchheimer inertia coefficient, v 

equation (8) 0 
L enclosure length [m] 
J viscosity ratio, equation (6) p 
k thermal conductivity [W m K 1] r 
K permeability [m 2] O~ 
Nu Nusselt number, equations (10) and 

(11) 
p, P dimensional and non-dimensional 

pressures, equation (5) 
Pr Prandtl number, equation (7) 
q", Q" dimensional and non-dimensional 

heat fluxes, equation (8) 
Ra Rayleigh number, equation (8) cr 
t time [s] D 
T temperature [K] AT 
u, v horizontal and vertical seepage f 

(Darcy) velocity components [ms -1] h 
U, V non-dimensional horizontal and H 

vertical velocity components, 1 
equation (5) m 

x, y horizontal and vertical coordinates [m] M 
X, Y non-dimensional horizontal and max 

vertical coordinates, equation (5) s 
W non-dimensional volume-averaged 

velocity, equation (23). 

Greek symbols 
thermal diffusivity, equation (7) 
[m 2 s 1] 

fl isobaric coefficient of thermal 
compressibility [K-i] 

velocity layer thickness scale 
difference 
dummy variable, equation (21) 
porosity 
volumetric specific heat ratio, equation 
(7) 
dynamic viscosity [kg m -1 s 1] 
kinematic viscosity [m 2 s- ' ]  
non-dimensional temperature, 
equation (6) 
density [kg m 3] 
non-dimensional time, equation (6) 
local (i,j) volume, equation (23) 
auxiliary function 
heating non-dimensional half-period, 
Fig. 1 
streamfunction. 

Subscripts 
C isothermal cold wall 

critical 
porous modified 
temperature difference 
fluid 
high-heating regime 
heated wall 
low-heating regime 
reference value 
mid vertical plane 
maximum value 
porous medium (fluid and solid 
matrix) 

ss steady state 
v flow 
o initial 
0 temperature. 

Superscripts 
(-) surface averaged. 

medium configuration is studied considering Darcy 
number values from 10 -6 to 10 -2, with Darcy-modi- 
fled Rayleigh number from l0  4 to 10 8. The Prandtl 
number is fixed and equal to 7. The non-dimensional 
heat amplitude varies from 0.2 to a maximum value 
equal to 2, beyond which the heating cycle degenerates 
with periods of effective cooling. 

PHYSICAL MODEL 

Consider an enclosure, as depicted in Fig. 1 (top), 
filled with a fully saturated solid homogeneous and 
isotropic porous matrix or with a clear (of any solid 
matrix) fluid. In either case, the fluid is Newtonian 
with constant properties, and the Oberbeck-Bous- 
sinesq approximation is considered valid. For the fluid 

saturated porous matrix configuration, the fluid and 
porous matrix are assumed to be in thermal equi- 
librium throughout the heating process. The left wall 
of the enclosure is maintained at a constant uniform- 
temperature. A periodic heat flux, following the time 
evolution shown in Fig. I (bottom), is applied at the 
right wall. All other surfaces of the enclosure are 
assumed adiabatic. 

It is convenient to introduce the non-dimensional, 
time-dependent, general conservation of mass, 
momentum, and energy equations for a fluid saturated 
porous medium system [22, 23], written in Cartesian 
coordinates : 

OU c~V 
~ + ~ T = o  (l) 
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Fig. 1. Model of physical system and boundary conditions 
(top) ; square wave heating (bottom). 

DU ~P 

Dz 8X 

D V  aP 
Dz ~3 Y 

+ ~b Pr JV 2 U 

I 2 Pr 
- 4 ;  ~ ( U 2  + V~)~/2U-4~ ~a v 

b dp P t J V  2 V 

(2) 

e r  2 -ff)2 I (u2. -}-v2) l /2V-f f )2~aV-~-  if) RaPrO (3) 

2 ~0 ~0 O0 
~b Ozz + U ~  + V ~  = V20. (4) 

The dimensionless variables (corresponding dimen- 
sional quantities are listed in the nomenclature) are : 

(x, y) (u, v) 
( X , Y ) =  H (U, V) - ~ts/H 

~ 2 H 2  

P = (P + PgY) pfc~ (5) 

T -  To t-- t~ IA 
0 = - - - -  z -  J = - -  (6) 

q"H/ks ~H2/~ p 

2 (pC)s Pr = v k~ K - --  a s -  D a = ~  (7) 
(pc)f ~s (pc)f 

- 1 7 5 (  Da ~1/2 Q" q. Ra gflq~H4 jr= = _ _  
vcqk~ " \ ~  ] q~" 

(8) 

The general transport equations are convenient 
because they reduce to the Navier-Stokes equations 

for modeling transport phenomena in a clear fluid 
system by setting Da -~ ~ ,  q~ = 2 = J = 1, and mak- 
ing all porous medium properties, ( )s, equal to the 
corresponding fluid property, ( )f. 

The term D( )/Dz of equations (2) and (3) rep- 
resents the total derivative, 0( ) / & + U ~ (  )/~X+ 
VO( )/OY. Parameter J, equation (6), accounts 
for the effective viscosity of the fluid saturated porous 
medium [24]. The expression for the inertia parameter, 
/, shown in equation (8), is obtained by invoking the 
Ergun [25] model. The Rayleigh number defined in 
equation (8) is based on the cycle-averaged heat 
flux, q~ ; the instantaneous time-dependent Rayleigh 
number is then equal to RaQ". The porous- 
modified, heat-flux-based Rayleigh number, RaD, 
is defined as equal to Ra Da. 

For a porous medium configuration, the time 
dependent inertia term kept in both momentum equa- 
tions (2) and (3) is negligible for most practical situ- 
ations (the time of transient decay is proportional to 
Da/(dp2Pr) for Darcy flow, and to Da3/4/(dp3/2Rao Pr)i/2 
for Forchheimer flow, [26]). However, for moderate 
to high Darcy number values, as considered in the 
present study, the transient flow inertia terms should 
not be neglected a priori. 

In both clear fluid and porous medium con- 
figurations, the enclosure is saturated with initially 
motionless and isothermal fluid. The left wall of the 
enclosure is set at a constant temperature, 0c, equal 
to the initial temperature of the system, 0o = 0. A 
constant heat flux, Q " =  1, is then imposed on the 
right wall. The initial phase of the thermal process 
refers to the heating of the enclosed quiescent fluid 
until a steady convection regime is attained. At z = 0 
(note that the non-dimensional time, equation (6), is 
zero when the system reaches steady state, t = ts3, the 
system undergoes a second phase during which the 
dimensionless heat flux at right wall oscillates with 
amplitude A (Fig. 1). 

According to the definition of dimensionless time, 
equation (6), and Fig. 1, the dimensional high-heating 
and low-heating time intervals are, respectively : (Ath, 
At1) = (~'~h, ~')l) ~bH2/gs, for the porous case, and (Ath, 
At0 = (Oh, fl])H2/af, for the clear fluid case. Equal 
high-heating and low-heating periods are assumed 
here, flh = f2, = fl, therefore, the non-dimensional 
heating frequency is: F =  1/(2f~). Notice that by 
definition of the non-dimensional pulsating heat flux, 
equation (8), the system is never cooled during the 
heat pulsating process unless A is larger than 2. At 
A = 2, high-heating periods are intercalated with 
adiabatic periods. 

Three parameters are chosen to help understand 
the heat-amplitude effect on convection, respectively : 
right (heating) wall, instantaneous, surface-averaged 
temperature, Tn; instantaneous, surface-averaged, 
left (isothermal) wall heat flux, #~ ; and instantaneous, 
surface-averaged, heat transfer rate through an 
imaginary vertical plane positioned at the middle of 
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the enclosure, q~. The corresponding non-dimen- 
sional quantities are : 

OH = f] Olx=L/ndY (9) 

Nuc-q~qm" - -  fiO~Xx=o dY (10) 

_ q ' ~  ~ ~0 

From the heat-flux-based Rayleigh number, equations 
(8) and (9), a temperature-based Rayleigh number 
can be defined and written as 

RaaT -- gfl(Tu - Tc)H3 -- OHRa. (12) 
~¢2 s 

THEORETICAL ANALYSIS 

A theory to obtain an estimate of the heating fre- 
quency that leads to natural convection resonance is 
now presented. As indicated by Antohe and Lage [21], 
flow resonance is expected to be induced when the heat 
pulsating frequency,f, coincides with the frequency of 
the flow wheel circulating within the enclosure,fv. The 
result of this simple but powerful theoretical analysis 
is fundamental as it provides a base value around 
which a precise resonance frequency value can be 
searched by numerical simulations. 

A theoretical representation of the flow wheel fre- 
quency,f  v, was introduced by Antohe and Lage [21] 
for clear fluid and porous medium configurations, 
assuming a single fluid circulating speed (valid during 
a complete pulse) based on the cycle-averaged Ray- 
leigh number. Their approach led to a simple, closed- 
form solution for estimating the resonance frequency. 

A more consistent and general theory can be 
developed by recognizing that different fluid cir- 
culating speeds are induced during each heating 
period of the pulse. The corresponding cycle-averaged 
velocity is different than the velocity induced by the 
cycle-averaged Rayleigh number (the velocity scale 
is a non linear function of the Rayleigh number). 
Although more laborious, this novel approach leads 
to a more accurate estimate of the resonance fre- 
quency by including the heating amplitude effect (the 
result presented by Antohe and Lage [21] is inde- 
pendent of the heating amplitude). The extra effort is 
translated, eventually, into fewer numerical simu- 
lations for establishing the precise resonance fre- 
quency of the system. 

Each individual flow velocity, for each heating per- 
iod (high-heating, low-heating), is scaled based on 
the respective instantaneous Rayleigh number, RaQ". 
The cycle-averaged velocity scale is defined as the 
algebraic average of the individual high-heating and 
low-heating velocity scales. The dimensional cir- 
culating frequency scale is obtained by dividing the 
average velocity scale by the scaled distance traveled 

by a fluid pack per cycle within the enclosure (enclos- 
ure perimeter) : 

fv (13) 2(H+L)"  

The same flow frequency scale in non-dimensional 
form is 

I v~+v, 
Fv - (fib+fit ~ 4(1 + L ) .  (14) 

The velocity scales, Vh and V~, are obtained by cross- 
differentiating the general momentum equations (2) 
and (3) to eliminate the pressure gradient term. The 
result, in a scaled form, is 

Vh,I Vh,I 0.143~b 1/2 
- -  + V~.l ~ -c~JPI - -  V~j 
f~h,l 6~h,1 Da 1/2 

-- D-~- Vh'l"~-(~2 (15) 
• \ 0/hJ 

where 0h,l is the high-heating or low-heating tem- 
perature scale. The high-heating or low-heating ther- 
mal boundary layer scale, 6o~.,, is obtained from scaling 
the energy equation (4) : 

1 

1/2 

provided 6% of equation (16) be smaller than its upper 
bound L/(2H). 

The relationship between the thermal boundary 
layer and the velocity layer is, for a clear fluid system 
[27]: (6o/6)h.~ = ~(Pr) U2, with ~(Pr) equal to 1 for 
Pr/> 1, or to Pr-~ for Pr ~< 1. Lage [28] showed that 
the same relationship is also valid for a porous 
medium system configuration provided the Prandtl 
number be replaced by the porous modified Prandtl 
number, as defined in equation (7). With the thermal 
boundary layer to velocity layer ratio, (6o/6)hj, and 
equation (16), the momentum equation (15) is 
rearranged as: 

0.143~b'/:1 
V~jIl+d?JPr¢(Pr)+ Ball2 J 

+ 4,:er] 
+ ~h, JPr ~(Pr) + 

' LDh,1 Da J 

-d?2RaPr~(Pr)-l/2Ohj~O. (17) 

Equation (17) is valid during both high and low heat- 
ing periods. For equal heating periods f~h = ~ = 11, 
the distinction between high and low velocity scales is 
made by the temperature scale within each heating 
period. An adequate scale for 0h, ~ during each heating 
period is the scale of the heating wall averaged tern- 
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perature OH (0nh and OH,). For a porous medium 
system, the averaged temperature scale of a vertical 
wall with constant heat flux [29] is : 

OHh., ~ 2.34(a°3 L(Rah , jPr ) - l /SDa- l / l °  (18) 

where in here the high-heating and low-heating instan- 
taneous Rayleigh rtumbers, Rah and Ra~, are equal 
to (1 + A / 2 ) R a  and (1-A/2)Ra,  respectively (note: 
Rah.i = Ra Q"). 

The two velocity equations, obtained from com- 
bining equations (IL7) and (18), and equation (14) 
form a system of e.lgebraic and coupled non linear 
equations in the unknowns Fv = 1/(2~), Vh and VI. 
The system of equations is solved numerically for each 
particular set of parameters. 

Considering now a clear fluid configuration, the 
corresponding heating wall temperature scale and cor- 
responding velocity scale equations are : 

L 
, 1 / 5  / 5  OHh, "~ ~iRah,, ¢(er) (19) 

- Ra Pr ~ ( P r )  - 1/20h.l ~ 0 .  ( 2 0 )  

Within the parametric range considered here, the 
numerical solution of the system of equations for clear 
fluid [equations (14), (19) and (20)], or porous 
medium [equations (14), (17) and (18)], configuration 
leads to four real theoretical solutions. Two of them 
were negative being immediately discarded. The cor- 
rect answer, the resonance frequency, was selected 
among the remaining two by enforcing the positive 
velocity scale requirement (recall that the scale analy- 
sis is implicitly done along the heating wall where the 
fluid vertical velocity scale should be always positive). 
Only one of the two remaining solutions satisfied this 
requirement. 

RESUL'rS AND DISCUSSION 

The numerical ,;cheme, presented in detail by 
Antohe and Lage [21], is based on the finite volume 
technique for solving the system of time dependent 
differential equations (1)-(4), with appropriate 
boundary and initial conditions. The present numeri- 
cal code is validated against results reported by Arm- 
field and Patterson [30]. Grid accuracy tests are per- 
formed, following tlhe same basic concepts described 
in detail by Manole and Lage [31]. Several different 
grid distributions are implemented, depending on the 
case. Numerical results reported here are at least 5% 
accurate for a 50% increase in the total number of 
grid lines. 

Numerical convergence is examined locally fol- 
lowing the criterion 

I g i +  1 _ _  dl 
m a x ] ~ ]  < 10 -3 (21) 

where e is replaced by U, V and 0 at every (X, Y) 
location of the discretized domain, and i and i+  1 are 
two consecutive iterations at the same time z. 

Numerical and theoretical resonance frequency 
results, with L / H  = 1, Pr = 7, and heating amplitude 
A from 0.2 to 2.0, are presented in Table 1. Clear 
fluid results cover the Rayleigh number range 107-109. 
Porous medium results are obtained with ~b = 0.4, 
,~ = 0.4, J : 1 and Darcy number 10-2-10 -6. The 
Rayleigh number range for the porous medium cases 
is 106-108 for Darcy 10 2, 101°-10 i2 for Darcy 10 -4, 
and 10~2-1014 for Darcy 10 -6 .  Note that the cor- 
responding porous-modified Rayleigh number (Ray) 
range is 104-106 for Darcy 10 -2, and 106-108 for Darcy 
10 -4 and 10 - 6  . 

These parametric values are carefully selected. In 
all cases, for instance, the Rayleigh number varies 
from a low limiting value, below which flow resonance 
becomes undetectable, to a value limited by the 
required computational time for obtaining mean- 
ingful (accurate) results. The parameter 2/q5 of equa- 
tion (4) is equal to one, a reasonable approxima- 
tion for values obtained in practical systems, e.g. 
glass-water = 1.33, soil-water = 1.24. From (pc)s = 
~)(pc)f"}-(1--f~)(pC)matrix, it is straightforward to 
show that 2 = q~ is a limiting value valid for an 
adiabatic solid matrix. Therefore, the results presented 
here are valid also for concentration driven convec- 
tion, if one replaces temperature with concentration, 
and thermal parameters with the corresponding solu- 
tal parameters. 

As expected, the theoretical values are within a fac- 
tor of order 1 from the numerical results, being con- 
sistently smaller. These results are remarkable con- 
sidering that the theoretical approach is based on the 
linearization of all derivative terms in the transport 
equations, and that the flow inside the enclosure is 
highly complex and non linear. 

The numerical simulations (presented later on) 
revealed that the resonance frequency is independent 
of the heating amplitude. The theoretical results are 
consistent with this assertion as indicated by the lim- 
ited effect (maximum of 10%) of the heating ampli- 
tude on the resonance frequency, except for the par- 
ticular case of A = 2. As mentioned previously, the 
low-heating period with A = 2 is in fact an adiabatic 
period (zero heat flux). The theoretical analysis pre- 
dicts a zero scale for the flow velocity during this 
period, and this value is used when computing the 
resonance frequency. This is not realistic as the flow 
inertia induced during the high-heating period 
guarantees a different than zero flow speed during 
the adiabatic period. Therefore, a larger discrepancy 
between theoretically predicted and numerically 
obtained resonance frequencies for A = 2 is justified. 
The flow inertia effect is expected to be reduced when 
dealing with a porous medium system. This is con- 
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Table 1. Numerical results and theoretical predictions of the resonance frequency, Fv, for clear fluid and fluid saturated 
porous medium systems as a function of heating amplitude A 

Clear fluid Da = 10 -2 Da = | 0  - 4  

A F,. Ra = 10  7 Ra = I0 s Ra = 10  9 Ra = 10  6 Ra = 1 0  7 Ra = 108 Ra = 10 t° Ra = 101~ Ra = 1012 

num. 250 588 1666 33 114 294 1220 4000 10000 
0.2 theo. 120.5 302.8 760.6 18.8 48.3 121.7 567.8 1497 .5  3832.0 
0.4 theo. 120.7 303.3 761.9 18.7 48.0 120.8 562.6 1484 .5  3799.2 
0.8 theo. 121.6 305.5 767.5 18.5 47.5 119.4 553.8 1462.1  3742.3 
1.2 theo. 123.5 310.2 779.2 18.5 47.2 118.4 546.6 1443 .8  3695.0 
1.6 theo. 127.6 320.5 805.0 18.7 47.4 118.2 541.4 1429 .9  3657.7 
1.8 theo. 132.4 332.5 835.3 19.1 48.1 119.1 540.5 1426 .8  3646.4 
2.0 theo. 61.6 154.6 388.5 16.8 44.0 112.4 529.5 1402 .2  3597.0 

L / H  = 1, Pr = 7 (for porous configuration : ¢ = 0.4, J = 1, 2 = 0.4). 

firmed by the progressive smaller discrepancy between 
results of  A = 2 and results of  A ~ 2, for Da = 10 -2 
and Da = 10 -4. 

Particularly for the porous medium configuration, 
results of  the low permeability case (Darcy equal to 
10 -6  ) a r e  not reported simply because no resonance 
is detected, even for Rayleigh number as high as 10 ~4. 
The sharp increase in resonance frequency as Darcy 
number varies from 10 2 to 10 -4,  as  shown in Table 
1, indicates that a further reduction in Darcy number 
would require an even larger heating frequency for 
achieving resonance. This frequency seems be too 
large for the flow to respond under such high damping 
conditions (drag imposed by porous matrix). 

Figures 2 and 3 present the time evolution of  the 
thermal parameters, Nusselt numbers and hot wall 
averaged temperature [equations (9) (11)], for 
Ra = 108 and Da = 10 2 and for Ra = 1012 and 
Da = 10 -4, respectively, and A = 0.4, 0.8 and 1.6 
(from top to bottom).  The graphs in each figure are 
for resonance frequency : F = 294 (Fig. 2) and F = 104 
(Fig. 3). 

In all cases, the mid plane Nusselt number, NuM, 
evolves to a periodic regime with amplitude larger 
than the heating amplitude. The amplitude difference 
increases with the heating amplitude. It seems that 
the heating amplitude, at resonance frequency, affects 
only the magnitude of  the Nusselt number and the hot  
wall temperature value: neither the phase shift nor 
the frequency of  response are changed. This is con- 
firmed by the results presented in Fig. 4 (for 
Da = 10 2) where the maximum mid-plane Nusselt 
number amplitude, NUM . . . . .  is presented as function of  
frequency, F, for different heating amplitudes. Several 
local NuM.,,,x maxima are revealed. It  was observed 
that the number and magnitude of  these local maxima 
increase with the Rayleigh number and with the heat- 
ing amplitude. The frequency for maximum NUM . . . .  
is defined as the resonance frequency of  the system. 
The other local maxima are developed at frequencies 
factor of  the resonance frequency (harmonics), as 
expected. The resonance frequency and its harmonics, 
for any specific Rayleigh number, do not change 
with the heating amplitude. Beyond the resonance 
frequency the Nusselt number amplitude decays 

Nu 
2.0 

1.0 

0.0 

- -  Nu c ..... Q" - -  Nu~ 

A~= 0,4 [ 

- ' ~ ~  ; - "  __ , ' '._- , - "  

01 
i ~ 0.05 

I I I I [ I I I I [ I I I I ~ I i i i [ I I i F ~ I I I 0 

0 0.01 0.02 0.03 

Nu ~ ]A=0.8 I 
2.0 

1.0 

0.1 OH 0.0 

0.05 
, , , l l l , l l r l l l l l l l l  , I , l l l l  , , , 0 

0 0.01 0.02 0.03 "C 

2.0 

1.0 

0.0 0.1 OH 

0.05 
I I I I ] l J h l ] k l L l l L k l l l l l l L ; I  ' 1 1  0 

0 0.0l 0.02 0.03 

Fig. 2. Nusselt numbers and hot-wall-averaged temperature 
vs time: porous medium system, heating at resonance fre- 

quency F = 294, Ra = 108 and Da = 10 -2. 

abruptly, indicating that the fluid is no longer capable 
of  responding to the high frequency heating. In the 
limit of  low frequencies, NUM,max tends to A, the 
heating amplitude. 

Some results of  numerical simulations considering 
a clear fluid system are shown in Fig. 5. The graphs, 
for Ra = 109, resonance frequency F =  1666 and 
A = 0.2, 0.8 and 2.0 (from top to bottom),  show a 
similar evolution in time as compared with results for 
the porous medium system. The evolution to steady 
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- -  Nu c ..... Q,, _ _  Nu M 

1.0 :"PTN :--/~ :--f~ ;-)"~ :'F"~, ; - -A .:- 

:---N "/ :---V :-3~L/ :--~/ :---V ',-)~J i " V ,  "11 0.1 "OH 
0.0 0.05 

: 71 7, ,~77," 7,-- i 7, r ~ ] - ,  : -  i 7,"-- ~ , - ] ' ]  T 7 ? 0 

0 2 4 6 (X10_,) 8 

Nu2.0 I Im =°'81 
rA   ,i/1 :A,;-A rA  

,.o ::_y L_V :.._d I._V L_V :.V i__V L. 
0.1 OH 

0.0 0.05 

~ ~  o 
0 2 4 6 

"C(xl0 -4) 

N2U0 ~ =  1'61 
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Fig. 3. Nusselt numbers and hot-wall-averaged temperature 
vs time: porous medium system, heating at resonance fre- 

quency F = 104, Ra = 1012 and Da = 10 4. 
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Fig. 4. Resonance amplitude, NuM ..... vs frequency for 
porous medium system with Da = 10 -2. 

periodic regime requires a larger number  of cycles in 
the clear fluid case than in the porous medium case. 
This phenomena is inertia related, and can be ex- 
plained by the damping effect that a porous matrix 
imposes on the circulating flow due to viscous and 
form drags. The same effect accounts for the larger 
number  of local maxima in the Nuu . . . .  curves for 
the clear fluid configuration, presented in Fig. 6. The 
frequencies related with these maxima, harmonics of 
the resonance frequency, are Rayleigh-number depen- 
dent, which differs from the porous medium case. 

Figure 7 presents a synthesis of the clear fluid and 
porous medium numerical simulations at the res- 
onance frequency, with NUM . . . .  plotted as a function 
of the heating amplitude for clear fluid (top), porous 
medium with D a =  10 2 (middle), and porous 
medium with Da = 10 -4 (bottom). The response of 
the system to changes in the heating amplitude is 
essentially linear: fbr the porous medium case and 
Ra = 108, the NUM ..... varies from 0.52 for A = 0.4 to 
2.1 for A = 1.6, that is roughly a four fold increase in 
both NUM . . . .  and A;  in the clear fluid case and 
Ra = 109, N u  M . . . .  varies from 0.40 for A = 0.2, to 4.6 
for A = 2.0, a 10 fold increase in both quantities. 
A general correlation is obtained for predicting the 

resonance amplitude, NUM . . . . .  as function of heating 
amplitude, Rayleigh number  and Darcy number  : 

I 0.0037 -1 018 
NUM . . . .  = 0.055 ( R a ~ O 3 , 7 J A R a .  (22) 

For  the clear fluid system, the second term within 
brackets goes to zero. 

Graphs of transients and phase-plane portraits are 
constructed for studying the heating amplitude effect 
on the evolution of the transport  phenomena within 
the enclosure. Figure 8 presents the results for clear 
fluid system configuration, at resonance frequency, 
Ra = 109, and heating amplitude equal to A = 0.2 
(top) and A = 2.0 (bottom). Each plot combines the 
time series of the hot-wall-averaged temperature with 
a phase-plane portrait  of  the hot-wall-averaged tem- 
perature vs a non-dimensional  volume-averaged vel- 
ocity, defined as 

W 1 = ~(U(i,j) 2 "4- V(i,j)2) ':2 . (23) 

The parameter ~e in equation (23) is the volume of 
the (i,j) local control volume. The volume averaged 
velocity provides a measure of the flow intensity inside 
the system. 

Both phase-plane portraits show a steady-periodic 
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1 

F 

regime. The black dots are numbered following the 
heating process, with 1 representing the beginning of  
the high-heating cycle. The hot-wall-averaged tem- 
perature evolution follows to a good extent the heating 

cycle, approaching an asymptotic value at the end of  
the high-heating and low-heating periods: points 3 
and 6 for A = 0.2, and points 7 and 12 for A = 2. 
Some peculiarities, however, can be observed immedi- 
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ately in the phase-plane portrait  graphs. In the top 
plot (A = 0.2), for instance, the average velocity 
decreases during the initial high-heating period (from 
1 to 2) and then it increases during the low-heating 
cycle, from 4 to 5, tv¢o somewhat unexpected results. 
In the lower plot (A = 2), the velocity reduction hap- 
pens at the end of the high-heating period, from 4 to 
7, and again a velocity increase is noticed during the 
low-heating regime. Cases with heating amplitude in 
between 0.2 and 2 show transition of velocity behavior 
from the behavior at amplitude 0.2 to the one at 2. 

The corresponding streamline frames, with stream 
function defined as U = ~ / a  Y and V = - Ou//c~X, 
are presented in Fig. 9, for A = 0.2, and Fig. 10, for 
A = 2.0. Minimum and maximum streamfunction 
values are fixed when plotting the frames of each 
figure. The arrows iadicate the rotation of the fluid. 

Following side-to-side the streamline evolution and 
the averaged velocity evolution, the case of A = 0.2 is 
first analyzed. The :reduction in the average velocity 
from 1 to 2 is caused by the formation of counter- 
rotating cells inside the enclosure. The step increase 
in the heat flux applied to the fight wall (hot wall) 
accelerates a fluid pa.ck next to it. This fluid pack rises, 
reaches the top of the enclosure and then it turns left 
facing a slow moving fluid pack, one that was moving 

along the right wall during the previous low-heating 
period. The fast fluid pack then chooses a less resistive 
path, flowing downwards to the center of the enclosure 
instead of going all the way to the left wall. A counter- 
clockwise cell is formed in 2, opposite to the flow cell 
adjacent to the left wall (cold wall). It is the shear 
competition (momentum diffusion) of these counter 
rotating cells that is responsible for the decrease in 
the averaged velocity during the initial high-heating 
regime. A similar argument explains the velocity 
increase from 4 to 5. In this case, as seen by the 
streamlines, the flow inertia built up during the high- 
heating period forces the merging of the two counter- 
rotating cells (notice from frame 3 to 4 how the right 
wall cell protruded towards the left wall). A unique 
large cell, in frame 5, occupies the entire enclosure 
with the flow assuming a well organized form. 
Evidently, the following low-heating regime provides 
a thermo-brake for the fluid, reducing the average 
velocity from 5 to 6. 

The A = 2.0 case reveals a different, and more com- 
plex, flow structure. From frame 1 to frame 4 of Fig. 
10, several cells are present, all co-rotating cells, and 
the averaged velocity keeps increasing (Fig. 8, 
bottom). The buoyancy induced during the high-heat- 
ing regime, starting at 1, accelerates the fluid flowing 
along these cells. These cells behave as momentum 
transmission gears. From 4 to 7, the fight upper corner 
jet formed by the accelerated fluid, protrudes itself 
towards the left side wall, tending to take over the en- 
tire enclosure. At frame 5, lower and upper branches 
managed to cross the entire enclosure creating 
zones of counter-current flow. That is why the average 
velocity value declines (Fig. 8). From frames 8 to 10, 
again a unique flow cell fills the enclosure propitiating 
a more organized flow wheel and an increase in the 
averaged velocity. At frames 11 and 12, the separation 
of the boundary layer along the right wall with the 
formation of a clockwise cell is evident. This is the 
breaking effect provided by the switch from high- 
heating to low-heating period. 

Another very interesting point, in agreement with 
previous observation [21], is the strong thermal strati- 
fication present at the center of the enclosure through- 
out the heating process. The isotherms (not included) 
show very little variation, even with such complex 
flow structures as presented in Fig. 10. 

A final note is the observation that a large portion 
of the fluid inside the enclosure travels a distance 
smaller than the perimeter of the enclosure during a 
heating cycle. This indicates, with equation (13), that 
the theoretically predicted resonance frequency is a 
lower bound for the actual resonance frequency, in 
support of the results presented in Table 1. 

DIMENSIONAL RESULTS 

Some dimensional configurations are now exem- 
plified, and the numerical results translated into 
dimensional quantities. Keep in mind that the number 
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Fig. 9. Streamlines corresponding to top plot of Fig. 8 : A = 0.2. 

of  possible practical  configurat ions leading to non-  
dimensional parameters within the range presented here 
is unlimited ; this is the beauty of  dimensional  results! 

Fo r  the clear fluid configurat ion,  one can consider  
an enclosure with characterist ic  d imension a round  0.1 
m, for instance. A heat  flux of  the order  of  50 W m -2 
leads to Ra ~ l 0  9. The critical dimensionless fre- 
quency for this par t icular  case is abou t  600 (Table 1), 

or a d imensional  pulsat ing period of  abou t  50 s. For  
the porous  med ium case, consider  a 0.1 m high poly- 
ethylene foam enclosure (permeabil i ty a round  10 -6 
m 2) sa turated with water.  Rayleigh n u m b e r  a round  
10 ~° is ob ta ined  with a heat  flux of  2 kW m 2. The 
numerical  results (Table 1) predict  resonance fre- 
quency a round  1200 or  d imensional  pulsat ing per iod 
of  30 s. 
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Fig. 10. Streamlines corresponding to bottom plot of Fig. 8 : A = 2.0. 

CLOSURE 

Transport of momentum and heat are investigated 
theoretically and numerically considering clear fluid 
and fully saturated porous medium enclosures under 
time periodic heating in the horizontal direction. 

The effects of heating amplitude and frequency on 

the transport phenomena are investigated in detail. A 
general theoretical model for predicting the natural 
frequency of the flow circulating inside a clear fluid, 
or porous medium, enclosure is obtained as a system 
of non-linear algebraic equations. This model, that 
incorporates the heating amplitude effect, is very 
important since flow resonance is believed to emerge 
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as the heating frequency matches the natural fre- 
quency of  the flow wheel inside the enclosure. 

Numerical  simulations indicate that the natural 
convection activity within the enclosure reaches sev- 
eral local maxima (harmonics) as the heating fre- 
quency is increased, with a climax at a certain fre- 
quency referred to as resonance frequency.  The 
theoretical estimates, consistently smaller than the 
numerical results, provide a powerful tool for guiding 
the numerical simulations towards a more precise 
determination of  the resonance frequency. 

The clear fluid system seems to be more sensitive to 
variations in the heating amplitude. The additional 
drag imposed by the solid matrix of  a porous medium 
system damps the flow inertia reducing the flow res- 
onance. No  resonance is detected for systems with 
Darcy number smaller or equal to 10 -6. 

The resonance frequency is shown to be inde- 
pendent of  the heating amplitude for both clear fluid 
and porous medium configurations. Moreover,  the 
natural convection response is shown to vary linearly 
with heating amplitude for a wide range of  
parameters, in agreement with theoretical predictions. 
A general correlation for determining the resonance 
amplitude, as function of  Rayleigh number and Darcy 
number, is provided. 

The effect of  increasing the heating amplitude on 
the flow evolution during a heating cycle is analyzed 
in detail. Using time evolution graphs, phase-plane 
portraits, and streamlines, several peculiar aspects are 
highlighted and explained. The flow is in general 
highly complex with strong mixing and little effect on 
the isotherm distribution. The streamlines support  the 
verification that the theoretical model offers a lower 
bound for the resonance frequency. 
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